The Microbial Diversity Distribution and Ecology of Permafrost in China a Review
Diversity and distribution of the prokaryotic community in well-nigh-surface permafrost sediments in the Tianshan Mountains, Prc
Abstract
The customs structures and diversity of bacteria and archaea were investigated at iv depths (1.5, 2.0, 2.5, and 3.0 m) in permafrost sediments in the Tianshan Mountains, using denaturing gradient gel electrophoresis of 16S rRNA cistron amplified by polymerase chain reaction. Phylogenetic analysis of the dominant bands sequenced revealed the presence of rich variety of leaner, which could be related to the Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes, Bacteroidetes, Firmicutes, and Chloroflexi. The Proteobacteria, consisting of the α, β, γ, and ε subdivisions, were clearly the dominant group at all depths studied. Archaeal diversity was relatively low and archaeal 16S rRNA cistron sequences were grouped into 3 phylogenetic clusters within the two kingdoms Euryarchaeota and Crenarchaeota. Within the Euryarchaeota, methanogen-related group II was most abundant at shallow depth (i.5 m), whereas halobacterium-related group I dominated at greater depths. The depression-temperature Crenarchaeota grouping was detected just at ii.5 and 3.0 m. Specific-depth distribution of methanogen-related Euryarchaeota grouping Two and denitrifying bacteria of the genus Pseudomonas dominated at 1.v 1000 depth, accompanied past a distinct top in the ratio of NH4-N to NO3/NO2-N, implying the potential chapters of these organisms in near-surface permafrost to release the greenhouse gases N2O and CHiv.
Résumé
La construction et la diversité des communautés de bactéries et d'archées présentes à quatre profondeurs sédimentaires (1,5; 2,0; two,5 et three,0 m) du permafrost des Montagnes du Tianshan ont été examinées par électrophorèse sur gel en gradient dénaturant du gène de l'ARNr 16S amplifié par PCR. Les analyses phylogéniques des bandes dominantes séquencées ont révélé une riche diversité de bactéries présentes qui pourraient être reliées aux Proteobacteria, aux Actinobacteria, aux Acidobacteria, aux Gemmatimonadetes, aux Bacteroidetes, aux Firmicutes et aux Chloroflexi. Les Proteobacteria, constituées des sous-divisions α, β, γ et ε, formaient clairement le groupe dominant à toutes les profondeurs étudiées. La diversité archéale était relativement faible et les séquences du gène de fifty'ARNr 16S archéal se groupaient en trois grappes phylogéniques à 50'intérieur de deux royaumes, les Euryarchaeota et les Crenarchaeota. Au sein des Euryarchaeota, le groupe II relié aux méthanogènes était le plus abondant en superficie(1,5 k) alors que le groupe I relié aux halobactéries dominait en profondeur. Le groupe des Crenarchaeota de basse température northward'était détecté qu'à ii,5 et iii,0 chiliad seulement. Les Euryarchaeota du groupe 2 relié aux méthanogènes et les bactéries dénitrifiantes du genre Pseudomonas dominaient à 1,v m de profondeur, suivant une distribution spécifique en fonction de la profondeur, phénomène accompagné par un pic distinct du ratio NH4-N à NO3/NO2-Due north, ce qui implique que ces organismes vivant près de la surface du permafrost ont la capacité potentielle de relâcher les gaz à effet se serre N2O et CHiv.
Become full admission to this article.
View all bachelor purchase options and become full admission to this article.
References
Aljanabi, S.Thou., and Martinez, I. 1997. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25: 4692–4693.
Bai, Y., Yang, D., Wang, J., Xu, S., Wang, X., and An, L. 2006. Phylogenetic diversity of culturable bacteria from tall permafrost in the Tianshan Mountains, northwestern Cathay. Res. Microbiol. 157: 741–751.
Bowman, W.D. 1992. Inputs and storage of nitrogen in winter snowpack in an alpine ecosystem. Arct. Alp. Res. 24: 211–215.
Campbell, B.J., Engel, A.S., Porter, M.L., and Takai, One thousand. 2006. The versatile ε-proteobacteria: key players in sulphidic habitats. Nat. Rev. Microbiol. 4: 458–468.
Casamayor, E.O., Massana, R., Benlloch, S., Øvreås, Fifty., Díez, B., Goddard, V.J., et al. 2002. Changes in archeal, bacterial and eukaryal assemblages along a salinity gradient by comparing of genetic fingerprinting methods in a multipond solar saltern. Environ. Microbiol. four: 338–348.
Cavicchioli, R. 2006. Cold-adapted archaea. Nat. Rev. Microbiol. 4: 331–343.
Cheng, S.M., and Foght, J.Thousand. 2007. Tillage-independent and dependent characterization of bacteria resident beneath John Evans Glacier. FEMS Microbiol. Ecol. 59: 318–330
Costello, East.G., and Schmidt, Due south.K. 2006. Microbial multifariousness in alpine tundra wet meadow soil: novel Chloroflexi from a cold, water-saturated environment. Environ. Microbiol. 8: 1471–1486.
Curtis, T.P., and Sloan, Westward.T. 2004. Prokaryotic multifariousness and its limits: microbial community structure in nature and implications for microbial ecology. Curr. Opin. Microbiol. vii: 221–226.
Delbès, C., Leclerc, Thou., Zumstein, E., Godon, J., and Moletta, R. 2001. A molecular method to study population and activity dynamics in anaerobic digestors. Water Sci. Technol. 43: 51–57.
Don, R.H., Cox, P.T., Wainwright, B.J., Baker, 1000., and Mattick, J.S. 1991. 'Touchdown' PCR to circumvent spurious priming during factor amplification. Nucleic Acids Res. 19: 4008.
Fromin, N., Hamelin, J., Tarnawski, Southward., Roesti, D., Jourdain-Miserez, K., Forestier, N., et al. 2002. Statistical assay of denaturing gel electrophoresis (DGE) fingerprinting patterns. Environ. Microbiol. four: 634–643.
Ganzert, L., Jurgens, Thousand., Münster, U., and Wagner, D. 2007. Methanogenic communities in permafrost-affected soils of the Laptev Ocean coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59: 476–488.
Gilichinsky, D.A., and Wagener, S. 1995. Microbial life in permafrost — a historical review. Permafrost Periglacial Processes, half dozen: 243–250.
Hershberger, K.L., Barns, Due south.M., Reysenbach, A.Fifty., Dawson, S.C., and Step, Due north.R. 1996. Broad diversity of Crenarchaeota. Nature, 384: 420.
Høj, L., Rusten, M., Haugen, Fifty.Due east., Olsen, R.A., and Torsvik, V.50. 2006. Effects of water regime on archaeal community limerick in Arctic soils. Environ. Microbiol. eight: 984–996.
Hügler, Yard., Huber, H., Stetter, K.O., and Fuchs, G. 2002. Autotrophic CO2 fixation pathways in archaea (Crenarchaeota). Arch. Microbiol. 179: 160–170.
Hügler, M., Wirsen, C.O., Fuchs, One thousand., Taylor, C.D., and Sievert, S.One thousand. 2005. Bear witness for autotrophic CO2 fixation via the reductive tricarboxylic acid bike by members of the ε subdivision of proteobacteria. J. Bacteriol. 187: 3020–3027.
IPCC. 2001. Climatic change 2001: the scientific basis, report of working group i. Cambridge Academy Press.
Jukes, T.H., and Cantor. C.R. 1969. Development of poly peptide molecules. In Mammalian protein metabolism. Edited by H.N. Munro. Academic Printing, N.Y. pp. 21-132.
Kääb, A., Chiarle, M., Raup, B., and Schneider, C. 2007. Climate change impacts on mountain glaciers and permafrost. Global Planet. Change, 56: vii–9.
Kirk, J.L., Beaudette, L.A., Hart, M., Moutoglis, P., Klironomos, J.N., Lee, H., and Trevors, J.T. 2004. Methods of studying soil microbial diverseness. J. Microbiol. Methods, 58: 169–188.
Könneke, M., Bernhard, A.E., de la Torre, J.R., Walker, C.B., Waterbury, J.B., and Stahl, D.A. 2005. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437: 543–546.
Liebner, South., Harder, J., and Wagner, D. 2006. Stability of methyl hydride oxidizing communities in Siberian permafrost soils in the context of global climate change [online]. International Conference on Alpine and Polar Microbiology. Available from: http://hdl.handle.net/10013/epic.24249 [accessed 27–thirty March 2006].
Lipson, D.A., and Schmidt, S.K. 2004. Seasonal changes in an alpine soil bacterial customs in the Colorado Rocky Mountains. Appl. Environ. Microbiol. lxx: 2867–2879.
Marchenko, South.Due south., Gorbunov, A.P., and Romanovsky, 5.E. 2006. Permafrost warming in the Tien Shan Mountains, Central Asia. Global Planet. Change, 34: 311–327.
McCaig, A.East., Glover, L.A., and Prosser, J.I. 2001. Numerical analysis of grassland bacterial community structure under different land management regimens by using 16S ribosomal Deoxyribonucleic acid sequence data and denaturing slope gel electrophoresis banding patterns. Appl. Environ. Microbiol. 67: 4554–4559.
Muyzer, G., de Waal, E.C., and Uitterlinden, A.M. 1993. Profiling of complex microbial populations past denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695–700.
Nakagawa, S., Takai, Grand., Inagaki, F., Hirayama, H., Nunoura, T., Horikoshi, K., and Sako, Y. 2005. Distribution, phylogenetic diversity and physiological characteristics of ε-Proteobacteria in a deep-sea hydrothermal field. Environ. Microbiol. 7: 1619–1632.
Nakatsu, C.H., Torsvik, 5., and Ovreas, 50. 2000. Soil community analysis using DGGE of 16S rDNA polymerase chain reaction products. Soil Sci. Soc. Am. J. 64: 1382–1388.
Oline, D.1000., Schmidt, Southward.Grand., and Grant, M.C. 2006. Biogeography and landscape-scale diversity of the dominant crenarchaeota of soil. Microb. Ecol. 52: 480–490.
Perreault, N.N., Andersen, D.T., Pollard, W.H., Greer, C.W., and Whyte, L.G. 2007. Characterization of the prokaryotic diversity in cold saline perennial springs of the Canadian High Arctic. Appl. Environ. Microbiol. 73: 1532–1543.
Rudolph, C., Wanner, G., and Huber, R. 2001. Natural communities of novel archaea and bacteria growing in cold sulfurous springs with a cord-of-pearls-like morphology. Appl. Environ. Microbiol. 67: 2336–2344.
Rudolph, C., Moissl, C., Henneberger, R., and Huber, R. 2004. Ecology and microbial structures of archaeal/bacterial strings-of-pearls communities and archaeal relatives thriving in common cold sulfidic springs. FEMS Microbiol. Ecol. 50: i–eleven.
Saitou, Northward., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. four: 406–425.
Steven, B., Léveillé, R., Pollard, Due west.H., and Whyte, L.G. 2006. Microbial ecology and biodiversity in permafrost. Extremophiles, x: 259–267.
Steven, B., Briggs, G., Mckay, C.P., Pollard, W.H., Greer, C.W., and Whyte, Fifty.Thousand. 2007. Characterization of the microbial diversity in a permafrost sample from the Canadian High Arctic using culture-dependent and culture-independent methods. FEMS Microbiol. Ecol. 59: 513–523.
Sun, J., Qin, D., Ren, J., Li, Z., and Hou, South. 2002. A study of water chemistry and aerosol at the headwaters of the Urumqi River in the Tianshan Mountains. J. Glaciol. Geocryol. 24: 186–191.
Takai, K., Inagaki, F., Nakagawa, South., Hirayama, H., Nunoura, T., Sako, Y., et al. 2003. Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol. Lett. 218: 167–174.
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix selection. Nucleic Acids Res. 22: 4673–4680.
Walsh, D.A., Papke, R.T., and Doolittle, W.F. 2005. Archaeal diverseness forth a soil salinity gradient prone to disturbance. Environ. Microbiol. seven: 1655–1666.
Williams, Chiliad.W., and Tonnessen, Thousand.A. 2000. Critical loads for inorganic nitrogen degradation in the Colorado Front Range, USA. Ecol. Appl. ten: 1648–1665.
Zhang, Grand., Niu, F., Ma, X., Liu, W., Dong, M., Feng, H., et al. 2007. Phylogenetic diversity of leaner isolates from the Qinghai-Tibet Plateau permafrost region. Can. J. Microbiol. 53: 1000–1010.
Zhu, C., Zhang, J., and Cheng, P. 1996. Rock Glaciers in the Key Tianshan Mountains, China. Permafrost Periglacial Processes, 7: 69–78.
Zhu, F., Wang, S., and Zhou, P. 2003. Flavobacterium xinjiangense sp. nov., and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int. J. Syst. Evol. Microbiol. 53: 853–857.
Information & Authors
Information
Published In
Canadian Journal of Microbiology
Volume 54 • Number 4 • April 2008
History
Received: 16 October 2007
Revision received: 3 December 2007
Accustomed: 14 Jan 2008
Published online: 15 March 2008
Key Words
- alpine permafrost
- community construction
- phylogenetic diverseness
- DGGE
Mots-clés
- permafrost alpin
- structure de la communauté
- diversité phylogénique
- DGGE
Authors
Metrics & Citations
Metrics
Other Metrics
Citations
Cite Every bit
DaqunYangD. Yang, JianhuiWangJ. Wang, YuBaiY. Bai, ShijianXuS. Xu, and LizheAnL. An. Variety and distribution of the prokaryotic community in near-surface permafrost sediments in the Tianshan Mountains, China. Canadian Periodical of Microbiology. 54(iv): 270-280. https://doi.org/10.1139/W08-004
Export Citations
If you take the advisable software installed, you tin can download article citation data to the citation manager of your selection. Simply select your manager software from the list below and click Download.
Cited by
1. The Spatiotemporal Patterns and Interrelationships of Snow Cover and Climatic change in Tianshan Mountains
ii. Biodiversity, Ecological, and Commercial Importance of Psychrophilic Microorganisms
three. Community construction and distribution of culturable bacteria in soil forth an altitudinal gradient of Tianshan Mountains, Mainland china
4. Variations in culturable bacterial communities and biochemical backdrop in the foreland of the retreating Tianshan No. 1 glacier
five. Characterization of the prokaryotic diversity through a stratigraphic permafrost core profile from the Qinghai-Tibet Plateau
6. Relative Roles of Deterministic and Stochastic Processes in Driving the Vertical Distribution of Bacterial Communities in a Permafrost Core from the Qinghai-Tibet Plateau, Communist china
7. The microbial diverseness, distribution, and ecology of permafrost in China: a review
8. Bacterial diverseness in the foreland of the Tianshan No. ane glacier, Communist china
9. Multifariousness and environmental of psychrophilic microorganisms
View Options
Go Access
View options
Full Text
Open Full Text Media
Media
Other
Tables
Source: https://cdnsciencepub.com/doi/10.1139/W08-004
0 Response to "The Microbial Diversity Distribution and Ecology of Permafrost in China a Review"
Postar um comentário